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The paper deals with the problem of vibrations and stability of a non-prismatic column
compressed by the follower force. The material of the column is characterized by Rabotnov's
strain hardening non-linear creep law. It is assumed that the stress and strain in the basic
state (e.g., pure compression) are subject to slight variation due to small vibrations. Thus, it
is possible to linearize the creep law with respect to these variations so that the linear
equations of motion can be obtained. They allow determination of the relationship between
the real and imaginary parts of complex frequency and the compressive force (characteristic
curves). The behaviour of characteristic curves for several types of non-prismatic columns
have been examined and presented in numerous "gures. Additionally, some parametrical
optimization procedures have been performed.
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1. INTRODUCTION

There exists a comprehensive literature devoted to the stability and vibrations of the
linearly elastic structural systems, mainly columns [1]. Considerably fewer papers take into
account the rheological properties of material. In particular, some of them consider a very
interesting phenomenon of destabilization of non-conservative systems. Such phenomenon
is due to the internal damping of material which has been characterized by the linear
rheological model of a viscoelastic material of the Kelvin}Voigt type. Some references
dealing with the above-mentioned problems have been presented by Gajewski [2]. Many
other problems of analysis and synthesis of columns compressed by follower forces with
respect to its stability have been discussed by Bogacz and Janiszewski [3] and Langthjem
and Sugiyama [4}6].

Despite extensive literature devoted to the problems of stability of structural elements
subjected to non-conservative forces (in particular the follower forces), Koiter [7] strongly
criticized papers of that type. However, the phenomenon of the loss of stability of a column
compressed by a follower force was experimentally veri"ed for the "rst time by Yagn and
Parshin [8] in 1967. New experiments have been performed by Sugiyama and co-workers
[9, 10]. Recently, Langthjem et al. [11] during the Fourth EUROMECH Solid Mechanics
Conference, June 26}30, 2000, Metz, France, in a very impressive manner, presented a video
recording of their interesting experiments concerning columns subjected to rocket thrust
and a pipeline conveying #uid. All experiments con"rm the theoretical predictions that have
been made so far. The experiments presented in references [9, 10] were carried out for
viscoelastic columns with slight external and internal damping. As it is known, in such cases
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the critical force depends on the external to internal damping coe$cients ratio and an
external damping eliminates the destabilization e!ect (cf. references [12, 13]). It should be
supposed that new experiments performed for structural elements made of creeping
materials with great internal damping will con"rm the results presented in this paper.

Stability of prismatic columns compressed by a non-conservative concentrated force in
non-linear creep conditions was the object of research in the Ph.D. Thesis of Kowalski [14]
(under the supervision of M. Z0 yczkowski). Some elements of the work have been presented
in reference [15]. The authors took into account Norton and Zhukov}Rabotnov}Churikov
[16] non-linear models of material. The dependence of critical force causing the loss of static
and kinetic stability on the so-called tangency coe$cient has been considered.

A comprehensive review of papers (187 references) devoted to the optimal structural
design under creep conditions is presented by Z0 yczkowski [17]. Recently, an attempt at the
optimization of a column compressed by a non-conservative force in non-linear creep
conditions has been made by Gajewski [18].

The principal aim of the present work is to examine the in#uence of a non-prismatic form
of the column on its vibrations and stability in non-linear creep conditions. Especially, the
behaviour of characteristic curves will be considered. Some additional e!ects will also be
taken into account, namely: (1) compressibility of the axis; (2) rotatory inertia; (3) shear
deformations and (4) external damping. Similar problems for prismatic columns have been
analyzed in reference [2].

2. NON-LINEAR CONSTITUTIVE EQUATIONS OF CREEP

In order to explain the main ideas of this paper, some statements from paper [2] will be
repeated. It is assumed that the stress and strain components of the basic uniaxial stress
state are interrelated by the following creep law, accounting for strain hardening:

U (pN , p, pR )"0, where p"e!pN /EM , (1)

the symbol p denotes the creep strain, e the full strain, pN the stress, EM the elastic modulus and
U is a given material function, a bar over a symbol denotes dimensional quantities and a dot
denotes di!erentiation with respect to time. Generally, it can be assumed that during
vibrations of a system (or as a result of buckling), the stress and strain components in the
basic state are subjected to small variations and creep law (1) can be linearized with respect
to them. The behaviour of the vibrations determines the stability of the basic state
(precritical) at a critical time tN

*
. In the basic state, the relation between stress pN and strain e is

determined by equation (1), while the &&tangent creep modulus'' EM
tc

should be evaluated on
the basis of Rabotnov}Shesterikov [19] theory from the equation

LU/LpR D
0

dpR #LU/Lp D
0

dp#LU/LpN D
0

dpN "0. (2)

Assuming that the variations of stress and strain components are subjected to small linear
vibrations of complex frequency XM

de"dea eXM t
N , dpN "dpN a eXM t

N , (3)

and by substituting them into equation (2) one obtains the tangent creep modulus

EM
tc
"

dpN
de

"

dpN a
dea

"

XM LU/LpR D
0
#LU/Lp D

0
(XM /EM ) LU/LpR D

0
#(1/EM ) LU/Lp D

0
!LU/LpN

0
D
. (4)
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In this paper, the commonly used Rabotnov's strain hardening creep law has been adopted:

U"pR !C pN n/pk"pR !CpN np~k (5)

where k, n, C denote material constants (dependent on temperature). Moreover, all results
are obtained using material constants for copper at 2003C, n"32)8, k"9)52,
EM "1)22]105 MPa, C"2)18]10~113`n (MPa)~nh~1 (see Zhukov et al. [16]). In the basic
precritical state under assumptions of constant stress pN "const(t) and initial condition
p(0)"0, one obtains from equations (1) and (5)

e
0
"(pN

0
/EM ) M1#EM [(1#k)CtN

*
]1@(1`k) DpN

0
D(n~1~k)@(1`k)N (6)

and the &&secant modulus'':

E
sc
"EM

sc
/EM

0
"EM /EM

0
M1#EM [(1#k)CtN

*
]1@(1`k)DpN

0
D(n~1~k)@(1`k)N. (7)

According to the Rabotnov}Shesterikov [19] theory, the &&tangent modulus'' for the
non-linear creep law (5) can be written in the form of

E
tc
"

EM (1#((1#k)/k) tN
*
XM )

EM
0
(1#((1#k)/k) tN

*
XM #(n (1#k)/k) tN

*
CEM [(1#k)CtN

*
]~k@(1`k)DpN

0
D(n~1~k)@(1`k))

.

(8)

It is a function of critical time tN
*

and of complex frequency of vibration XM "dM #iuN . EM
0

is
a certain constant of the stress dimension.

3. BASIC EQUATIONS OF COLUMN VIBRATION AND KINETIC STABILITY

The general equations of the precritical and vibration states have been derived and
presented in monograph [1] where the e!ects of (1) extensibility of the axis, (2) shear
deformations, (3) rotary inertia and (4) non-linear properties of material have been
introduced. The equations of small vibrations of complex frequency XM superposed on the
momentless precritical state can be transformed into four complex or to eight real linear
ordinary di!erential equations with the appropriate boundary conditions. The loss of
stability at a critical force P

cr
is determined by the condition: dM "0.

In the case of a cantilever compressed by a follower force PM , as presented in Figure 1, the
system of basic di!erential equations constitutes the non-self-adjoint boundary value
problem

v@"(1#e
00

)(1#hP)u#(1#e
00

)hQ, u@"!M/E
tc
I, (9)

M@"(1#e
00

)(1#hP)Q#P (1#e
00

)(1#hP)u!raoX2Iu,

Q@"oX2Av#cXBv, v (0)"0, u (0)"0, M(1)"0, (Q#gPu)
1
"0, (10)

in which the dimensionless quantities have been introduced,
independent variables:

x"sN /lM , t"tN /tN
0
;

state variables:

u"uN /lM , v"vN /lM , u"u6 , N"NM lM 2/EM
0
IM
0
, Q"QM lM 2/EM

0
IM
0
, M"MM lM /EM

0
IM
0
;



Figure 1. The cantilever column compressed by a non-conservative force.
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possible design variables:

A (x)"AM /AM
0
, I(x)"IM /IM

0
, e (x)"EM /EM

0
, o (x)"oN /oN

0
;

constant parameters:

a"IM
0
/AM

0
lM 2, tM

0
"JoN

0
AM

0
lM 4/EM

0
IM
0
, t

*
"tN

*
/tN
0
;

external force and frequency of vibration:

P"PM lM 2/EM
0
IM
0
, X"tN

0
XM , d"tN

0
dM , u"tN

0
uN ;

elongation of the column axis:

e
00

"!aP/E
sc
A , e

01
"1#e

00
. (11)

AM
0

and IM
0

denote the cross-sectional area and the moment of inertia of the cross-section of
a prismatic column which has the same length and volume as the given non-prismatic bar,
EM
0

and oN
0

are certain constants of stress and density dimensions, with tN
0

denoting a certain
constant of time which may be treated as a unit of time. Additionally, quantities connected
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with the applied physical law have been introduced as

¹"¹
00

(qN /qN
0
)1@(1`k)(a/a

0
)(n~1~k)@(1`k), ¹

00
"e[(1#k)CEM n

0
qN
0
]1@(1`k)a(n~1~k)@(1`k)

0
,

E
sc
"e/(1#¹ (P/A)(n~1~k)@(1`k)), E

tc
"

e (1#((1#k)/k) t
*
X)

1#((1#k)/k) t
*
X#(n/k)¹ (P/A)(n~1~k)@1`k)

,

qN"t6
0
t
*
"tN

*
, qN

0
"3600 (s)"1(h), a

0
"10~4. (12)

By considering the physical constants for copper, given above, and using e,1 one obtains
¹

00
"0)71408.

In equations (9) and (10), the dimensionless frequency of vibrations X"tN
0
XM has been

introduced, while g, c, B (x) denote the &&tangency'' coe$cient, external viscous damping
coe$cient and dimensionless width of the column respectively. Parameter r characterizes
the value of the cross-sectional rotatory inertia, while function h(X), characterizing shear
e!ects, is de"ned by the equation

h (X)"ae
01

/(k
1
E
tc
A!ae

01
P), (13)

where k
1

denotes the shear coe$cient.
In order to use the transfer matrix numerical method, the system of complex equations (9)

is rewritten in the form of a system of real equations. After introducing the notation for real
and imaginary parts, namely,

v"v
1
#iv

2
, u"u

1
#iu

2
, X"d#iu, h"h

1
#ih

2
,

1/E
tc
"EI

tc
"EI

1
#iEI

2
, (14)

equations (9) and (10) take the form

v@
1
"e

01
(1#h

1
P)u

1
!e

01
h
2
Pu

2
#e

01
h
1
Q

1
!e

01
h
2
Q

2
,

u@
1
"!(1/I) EI

1
M

1
#(1/I) E3

2
M

2
,

M@
1
"(Pe

01
(1#h

1
P)!rao (d2!u2)I)u

1
#e

01
(1#h

1
P)Q

1

#(!P2e
01

h
2
#2raoduI)u

2
!e

01
h
2
PQ

2

Q@
1
"o(d2!u2)Av

1
!2oduAv

2
#cdBv

1
!cuBv

2
.

v@
2
"e

01
h
2
Pu

1
#e

01
h
2
Q

1
#e

01
(1#h

1
P)u

2
#e

01
h
1
Q

2

u@
2
"!(1/I) EI

2
M

1
!(1/I) EI

1
M

2
,

M@
2
"(P2e

01
h
2
!2raoduI) u

1
#e

01
h
2
PQ

1

#(Pe
01

(1#h
1
P)!rao (d2!u2)I) u

2
#e

01
(1#h

1
P)Q

2
,

Q@
2
"2oduAv

1
#o(d2!u2)Av

2
#cuBv

1
#cdBv

2
, (15)

v
1
(0)"0, v

2
(0)"0, u

1
(0)"0, u

2
(0)"0,

M
1
(1)"0, M

2
(1)"0, (Q

1
# gPu

1
)
1
"0, (Q

2
#gPu

2
)
1
"0, (16)
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where

a"((1#k)/k) qN /qN
0
, b"1#(n/k) ¹ (P/A)(n~1~k)@(1`k),

E3
1
"

(1#ad)(b#ad)#a2u2

e[(1#ad)2#a2u2]
, EI

2
"

(1!b)au
e[(1#ad)2#a2u2]

,

h
1
"

ae
01

[k
1
AEI

1
!ae

01
P (EI 2

1
#EI 2

2
)]

[k
1
A!ae

01
PEI

1
]2#[ae

01
PEI

2
]2

, h
2
"

ae
01

k
1
AEI

2
[k

1
A!ae

01
PEI

1
]2#[ae

01
PEI

2
]2

.

(17)

The boundary value problems (15) and (16) have been integrated by means of the transfer
matrix method which was widely used by Irie et al. [20]. It determines the so-called
characteristic curves, i.e., the relations between load parameter P and the real (d) and
imaginary (u) parts of complex frequency of vibration (X). In the case of non-conservative
load, the vibrations of the column are stable if d(0 and they lose stability by #utter if the
real part of a frequency changes its sign.

4. PARAMETRICAL OPTIMIZATION, RESULTS AND DISCUSSION

A numerical analysis was performed for a cantilever column loaded by a follower force, as
it is shown in Figure 1. The reference density oN

0
has been assumed to be equal to the column

density oN and as a result o"1. Similarly, e"1. All calculations were performed for
slenderness parameter a"10~5.

The dimensionless column cross-section area is normalized according to the constant
volume condition

P
1

0

A(x) dx"
<M
AM

0
lM
"1, (18)

where <M is the volume of the column.
In this paper, the transfer matrix method is applied to columns with three types of

cross-sectional area variation, (1) power function; (2) power function with added sine and
(3) &&optimal shape''.

1. Power function. For the "rst case, the function A(x) is calculated from the formula

A (x)"(s#1)(1!A
1
xs)/(s#1!A

1
), (19)

where: s*0, A
1
)1. For example, for the column of linearly varying cross-sectional area,

i.e., for s"1, for the tangential force g"1, for the case without external damping, rotatory
inertia and shear e!ects (c"0, k

1
PR and r"0), the characteristic curves corresponding

only to the "rst frequency of vibration are presented in Figures 2 and 3. They are obtained
for critical time parameters q"0)01 and 0)1, respectively, and for various values of shape
parameter A

1
. In Figure 2, one can see that for the lower value of critical time parameter the

critical forces (corresponding to d
1
"0) are very similar to one another, although the curves

P versus u
1

are rather di!erent. For the greater value of critical time parameter q"0)1, the
critical forces are strongly dependent on the shape parameter A

1
. The maximal critical force

P
cr
"10)89 is obtained for A

1
"!0)4 (see Figure 3).



Figure 2. Characteristic curves of (a) P versus d
1

and (b) P versus u
1

for a column of linearly varying
cross-section with parameters q"0)01, s"1, g"1, a"10~5, c"0 and k

1
PR. Key for column shapes (A

1
):

*h*, !2)0;*£*, !1)0;*d*, !0)8;*j*, !0)6;*m*, !0)4;*#*, !0)2;*s*, 0)0;*=*, 0)2;*j*,
0)4; ***, 0)6.

Figure 3. Characteristic curves of (a) P versus d
1

and (b) P versus u
1

for a column of linearly varying
cross-section with parameters q"0)1, s"1, g"1, a"10~5, c"0 and k

1
PR. Key for column shapes (A

1
):

*]h*, 0)9; *#*, 0)8; *n*, 0)6; *j*, 0)4; *d*, 0)2; *£*, 0)0; *h*, !0)2; *s*, !0)4.
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Further parametrical optimization by means of changing the parameter s in function (19)
increases the value of critical force only to 11)16 for s"0)4 and A

1
"!0)4.

2. Power function with sine. For the second type of shape variation, one con"nes the
calculations to the linear function with added sine function, namely

A(x)"2(1!A
1
x)/(2!A

1
)#A

2
sin (2nx), (20)

where the constants A
1

and A
2

should be chosen so that A (x)'0. The column shapes
analyzed in the paper are presented in Figure 4.

The maximal critical force P
cr
"13)30 has been obtained for A

2
"!0)55. The

corresponding characteristic curves related to the "rst complex frequency of vibration are
depicted in Figure 5.

3. Optimal shape. The third case of the column cross-section variation was obtained in
two steps. At "rst, following Ringertz [21], a linear interpolation of the design AG and the



Figure 4. Shapes of the column cross-section corresponding to equation (20). Key for column shapes (A
2
):

*n*, !0)2; *j*, !0)4; *d*, !0)55; *£*, !0)6; *h*, !0)8; *s*, !1)0.

Figure 5. Characteristic curves of (a) P versus d
1

and (b) P versus u
1

for the column with shape variations listed
in Figure 4. and with parameters q"0)1, s"1, A

1
"0)8, g"1, a"10~5, c"0 and k

1
PR.
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initial uniform design A0 was performed, such that

AI(m)"(1!m)A0#mAG, (21)

where m is a scalar parameter. The value m"0 gives the uniform column and m"1 gives the
optimal column obtained by Gutkowski et al. [22] for an elastic material and for the
tangential force (g"1). In the present case of a non-linear material in creep conditions,
the maximal critical force calculated for g"1, q"0)1, a"10~5, c"0, k

1
PR, r"0 has

been obtained for m"0)896. In the second step, the design AI(0)896) was approximated to
the design AA by the ninth degree polynomial. Finally, the so-called optimal shape was
calculated from the formula

A"(1!m
1
)A0#m

1
AA, (22)

where m
1
"1)003. The result is presented in Figure 6.

The characteristic curves corresponding to four frequencies of vibration for the optimal
shape are shown in Figure 7. Of course, the characteristic curves depend also on other



Figure 6. The &&optimal shape''.

Figure 7. Characteristic curves of (a) P versus d, (b) P versus u and (c) u versus d for the four frequencies of
vibration corresponding to the &&optimal shape'' and with parameters g"1, q"0)1, a"10~5, c"0 and k

1
PR.

Key for d values:*d*, d
1
;*s*, d

2
;*h*, d

4
and*£*, d

4
. Key for u values:*d*, u

1
;*s*, u

2
;*h*, u

3
and *£*, u

4
.
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Figure 8. The in#uence of shear e!ect on the "rst and second vibrational frequencies for columns with
&&optimal'' cross-section and having parameters g"1, a"10~5, q"0)1 and c"0. Key for shear values (k

1
):

*]h*, 0)001; *n*, 0)002; *j*, 0)003; *d*, 0)005; *s*, 0)010 and *h*, 0)100.

Figure 9. Characteristic curves for the optimally shaped column (having parameters a"10~5, q"1)0, c"0)1
and k

1
"0)1) versus the &&tangency'' coe$cient, g. Key for &&tangency'' coe$cient values (g):*h*, 0)0;*e*, 0)1;

*s*, 0)2;*£*, 0)3;*d*, 0)4;*m*, 0)5;*j*, 0)6;*r*, 0)7;*n*, 0)8;*#*, 0)9;*]h*, 1)0;*£*, 1)2;
*]*, 1)5; *=*, 2)0.
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parameters of the problem, for example shear coe$cient k
1
, tangency coe$cient g, external

damping c and slenderness parameter a. The in#uence of shear e!ects (coe$cient k
1
) on the

"rst and second frequency of vibration are presented in Figure 8.



Figure 10. The critical forces versus &&tangency'' coe$cient, for an optimally shaped column with parameters
a"105, q"1)0, c"0)1 and k

1
"0)1.
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Finally, the behaviour of characteristic curves versus tangency coe$cient g have been
considered taking into account shear e!ects (k

1
"0)1) and external damping (c"0)1). The

results of the calculations are presented in Figure 9.
On the basis of the above data, one can construct the graph of critical force P

cr
versus

tangency coe$cient g which is shown in Figure 10.

5. CONCLUSIONS

The behaviour of characteristic curves obtained for several types of cross-section
variations of the column compressed by a non-conservative force have been presented. It
was assumed that the material of the column is characterized by the non-linear creep law.
On the basis of the calculations presented in numerous "gures one can present the following
conclusions:

(1) The general behaviour of characteristic curves obtained for non-prismatic columns
di!ers from those presented in paper [2] for a prismatic column.

(2) The values of critical forces for the higher critical time parameter are to a higher
degree dependent on the column shape (Figure 3).

(3) Although the non-linear creep law considered in this paper is essentially di!erent
from the linear viscoelastic models of material, the destabilizing e!ect presented here is close
in character to the one obtained for the Kelvin}Voigt model (see e.g., reference [5]).

(4) As yet, the destabilizing e!ect of damping has not been veri"ed experimentally (see
e.g., [9}11, 13]). However, in the opinion of the author this e!ect should be taken into
account in further considerations. As it is seen in Figures 7}9 the real parts d

1
or d

2
reach

high positive values, which can lead to the loss of stability even in a short time (not only
after in"nite time).

(5) The &&optimal shape'' considered in the paper can be treated as a bimodal solution in
the sense of equation d

1
"d

2
with u

1
Ou

2
(see Figure 10).
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(6) The maximal critical force obtained in the paper, P
cr
+26, is about 2)5 times greater

than the critical force for a prismatic column (for g"1), while for linearly elastic optimal
shape the maximal critical force obtained so far, P

cr~el
"188)07 (see reference [21]), is 9)4

times greater than for Beck's column.
(7) The graph presented in Figure 10 has a discontinuity at the point g+0)9, where the

character of the loss of kinetic stability changes from the "rst to the second frequency of
vibration. Such an e!ect has not been observed as yet.
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